LESA researchers awarded US patent for privacy-preserving occupant detection using lights, not cameras
Sept. 22, 2016
The Power of Smart Lighting: Occupancy Detection using Lighting Becomes a Reality
Troy, N.Y. — A team of LESA faculty and graduate students from Rensselaer Polytechnic Institute and Boston University were recently awarded a US Patent titled, “Sensory Lighting System and Method for Characterizing an Illumination Space.” The patent describes how the LED lighting system in a space can detect occupants’ presence, location and pose without the use of cameras, thereby preserving the privacy of the room’s occupants.
Troy, N.Y. — A team of LESA faculty and graduate students from Rensselaer Polytechnic Institute and Boston University were recently awarded a US Patent titled, “Sensory Lighting System and Method for Characterizing an Illumination Space.” The patent describes how the LED lighting system in a space can detect occupants’ presence, location and pose without the use of cameras, thereby preserving the privacy of the room’s occupants.
“Every illuminated space has an optical “fingerprint,” said LESA Director Robert Karlicek, an inventor on the patent, as well as a professor in the Department of Electrical, Computer and Systems Engineering at Rensselaer. “If nothing is moving within the space, then the distributions of light and color in the space don’t move. Using a limited number of low cost sensors mounted on the ceiling, we can measure the optical fingerprint of any space and determine when and how things move within it.”
The patented approach to privacy-preserving occupancy sensing uses technology called time-of-flight (ToF) sensing. ToF sensors—using light—return a reasonably accurate physical distance measurement, allowing one to map the space, and determine the location as well as height (sitting, standing, prone) of individuals and other objects in the room.
“Imagine a building management system in an environment such as a healthcare facility, office or retail space, warehouse, airport, or library that always knows where occupants are located as well as the kind of activity occurring, using information generated by the lighting system,” Karlicek said. “This kind of data is needed to maximize building energy efficiency, improve security operations, and automatically create more comfortable environments for occupants. The patented technology developed at LESA promises to be more cost effective and accurate than many competing technologies.”
Karlicek further noted that the privacy-preserving feature of the technology makes it very attractive for use in almost any setting, since cameras are not used and individuals cannot be recognized. Perhaps most importantly, since most buildings already have lighting installed, the technology can piggy-back on existing infrastructure, once an LED lighting system is in place.
“Time-of-flight sensing is very appealing for occupancy sensing in smart environments and Internet-of-things applications, since it’s fairly robust to the ambient light in the room and the clothing of the participants. The sensors are also becoming very inexpensive. We’re excited about integrating time-of-flight into more advanced cognitive environments that can understand and react to the activities of their occupants,” said computer vision expert, Richard Radke, who serves as LESA Deputy Director and who is also an inventor on the patent. Radke is a professor in the Department of Electrical, Computer, and Systems Engineering at Rensselaer.
To further develop and demonstrate the new technology, LESA has created two prototype testbeds, the “Smart Conference Room” operated at Rensselaer, and the “Smart Hospital Room”, located at the University of New Mexico. The testbeds are dedicated to taking LED lighting to new levels of cost-effective data generation and control using only the properties of the light itself.
Ultimately, LESA’s goal is to integrate the time-of-flight sensors along with other low-cost sensing technology, control software and machine learning capability, into the room’s LED fixtures themselves. “It is part of LESA’s vision to create digitized illumination for new applications in lighting, healthcare, building management, horticulture and advanced 5G wireless communications platforms,” Karlicek said.
Other co-inventors on this patent include Professor of Electrical and Computer Engineering Thomas Little PhD and former graduate student, Pankil M. Butala, PhD, both from Boston University and former graduate student, Li Jia, PhD from Rensselaer.
Note: Date of Patent: June 7, 2016 #9,363,859
About the Center for Lighting Enabled Systems & Applications (LESA) ERC
Funded primarily by the National Science Foundation (NSF), the LESA ERC is an interdisciplinary, multi-university center developing “Smart Lighting Systems that See and ThinkTM”. The Center engages faculty members, graduate students, research staff, and undergraduates to work on research leading to smart lighting systems with adaptive and controllable properties that will change the way society uses lighting. The Center joins academia, industry, and government in partnership to produce transformational engineered systems, along with engineering graduates who are adept at innovation and primed for leadership in the global economy. The LESA ERC is headquartered at Rensselaer Polytechnic Institute in Troy, NY, and partners with Boston University, The University of New Mexico, and Thomas Jefferson University to achieve its objectives.
About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute, founded in 1824, is America’s first technological research university. The university offers bachelor’s, master’s, and doctoral degrees in engineering; the sciences; information technology and web sciences; architecture; management; and the arts, humanities, and social sciences. Rensselaer faculty advance research in a wide range of fields, with an emphasis on biotechnology, nanotechnology, computational science and engineering, data science, and the media arts and technology. The Institute is has an established record of success in the transfer of technology from the laboratory to the marketplace, fulfilling its founding mission of applying science “to the common purposes of life.” For more information, please visit http://www.rpi.edu.
Contact:
Ann M Seman, Business Development- LESA+1 518-276-2041
E-mail:
[email protected]Locate more lighting control vendors in the LEDs Magazine Suppliers Directory
Submit new products, case studies/projects, and other press releases at http://www.ledsmagazine.com/content/leds/en/addcontent.html.
More from LESA:
LESA research center visible light communication (VLC) breakthrough could alleviate bandwidth shortage
Submit new products, case studies/projects, and other press releases at http://www.ledsmagazine.com/content/leds/en/addcontent.html.
More from LESA:
LESA research center visible light communication (VLC) breakthrough could alleviate bandwidth shortage
Sponsored Content